

AS CHEMISTRY

Physical and Inorganic Chemistry

Total number of marks: 45

0 6	This question is about shapes of molecules and ions.	
	Draw the shape of NCl₃ and of NCl₄+	
	Include any lone pairs of electrons that influence the shape.	
	Name the shape of NCl₃	
	State and explain the bond angle in NCl ₄ +	
		[5 marks]
	Shape of NCl ₃ Shape of NCl ₄ ⁺	
	Name of shape of NCl ₃	
	Bond angle in NCl ₄ ⁺	
	Explanation of bond angle in NCl ₄ ⁺	
0 9 . 3	Silicon tetrafluoride (SiF ₄) is a tetrahedral molecule.	
	Deduce the type of intermolecular forces in SiF ₄	
	Explain how this type of intermolecular force arises and why no other type of intermolecular force exists in a sample of SiF ₄	
		[3 marks]
	Intermolecular forces in SiF ₄	
	Explanation	

0 5 This question is about equilibrium.

Sulfur trioxide decomposes to form sulfur dioxide and oxygen at temperature T_1 according to the equilibrium shown.

$$2SO_3(g) \Rightarrow 2SO_2(g) + O_2(g)$$
 $\Delta H = +196 \text{ kJ mol}^{-1}$

The graph in **Figure 4** shows the concentrations of sulfur trioxide and of oxygen over a period of 6 minutes at temperature T_1

Figure 4

0 5 • 1 State the time, to the nearest minute, when equilibrium is first established. Explain your answer.

[2 marks]

Time _____ minutes

Explanation

0 5 Sketch on the graph in **Figure 4** how the concentration of sulfur dioxide changes over these 6 minutes at temperature T_1

[2 marks]

0 5.3	The temperature of the mixture was changed to T_2 and the mixture left to est new equilibrium. In the new equilibrium mixture the concentration of sulfur trioxide was found 0.07 mol dm ⁻³	
	Deduce which of T_1 and T_2 is the higher temperature. Explain your deduction.	[2 marks]
		[2 marks]
	Higher temperature	
	Explanation	
0 5	This question is about Group 2 elements and their compounds.	
0 5 . 1	Explain why the melting point of magnesium is higher than the melting point sodium.	of
		[2 marks]
0 5.2	Give an equation to show how magnesium is used as the reducing agent in t extraction of titanium.	he
	Explain, in terms of oxidation states, why magnesium is the reducing agent.	
	Equation	[2 marks]
	Explanation	
0 5 . 3	State what is observed when dilute aqueous sodium hydroxide is added to so solutions of magnesium chloride and barium chloride.	eparate [2 marks]
	Observation with magnesium chloride	
	Observation with barium chloride	

0 7	Chlorine is used to decrease the numbers of microorganisms in water.		
	When chlorine is added to water, there is a redox reaction, as shown by the equation		
	Cl ₂ + H ₂ O		
0 7.1	Deduce the oxidation state of chlorine in HClO and the oxidation state of chlorine in HCl		
	[1 mark]		
	Oxidation state of chlorine in HClO		
	Oxidation state of chlorine in HCl		
0 7.2	Give two half-equations to show the oxidation and reduction processes that occur in this redox reaction. [2 marks]		
	Oxidation half-equation		
	Reduction half-equation		
0 1	This question is about atomic structure.		
0 1.1	There is a general trend for an increase in ionisation energy across Period 3. Give one example of an element that deviates from this trend.		
	Explain why this deviation occurs. [3 marks]		
	Element		
	Explanation		
0 1.2	Give an equation, including state symbols, to represent the process that occurs when the third ionisation energy of sodium is measured. [1 mark]		

0 1 . 3 Figure 1 shows the successive ionisation energies of a Period 3 element, X.

Figure 1

Identify element **X**. Explain your choice.

[3 marks]

Element	
Evolunation	

0 7.2	Solid sodium iodide reacts with concentrated sulfuric acid to form iodine and sulfur in a redox reaction.	
	Give a half-equation to show the conversion of iodide ions to iodine.	
	Give a half-equation to show the conversion of sulfuric acid to sulfur.	
	Give an overall equation for this redox reaction.	
	Identify one other sulfur-containing reduction product formed when solid sodium iodide reacts with concentrated sulfuric acid.	
	[4 marks]	
	Half-equation for the conversion of iodide ions to iodine	
	Half-equation for the conversion of sulfuric acid to sulfur	
	Overall equation	
	Other sulfur-containing reduction product	

A student completes an experiment to determine the percentage by mass of sodium chloride in a mixture of sodium chloride and sodium iodide.

The student uses this method.

- . 600 mg of the mixture are dissolved in water to form a solution.
- An excess of aqueous silver nitrate is added to the solution. This forms a
 precipitate containing silver chloride and silver iodide.
- Excess dilute ammonia solution is then added to the precipitate. The silver chloride dissolves.
- . The silver iodide is filtered off from the solution, and is then washed and dried.

The mass of the silver iodide obtained is 315 mg

0 7.3	Silver nitrate is added to the solution.	
	Suggest why an excess is used.	[1 mark]
0 7.4	Calculate the amount, in moles, of silver iodide obtained. $ \textit{M}_{r}(\text{AgI}) = 234.8 $	[1 mark]
	Amount of silver iodide	mol
0 7.5	Calculate, using your answer to Question 07.4 , the mass, in grams, of sodiu in the mixture.	ım iodide
	$M_{\rm r}({\sf NaI}) = 149.9$	[1 mark]
	Mass of sodium iodide	g
0 7.6	Calculate, using your answer to Question 07.5 , the percentage by mass of sodium chloride in the mixture.	[2 marks]
	Percentage of sodium chloride	

0 9	Which sample, measured at room temperature and pressure, contains the greatest number of the stated particles?		eatest
	number of the stated particles:		[1 mark]
	A 1 g of hydrogen molecules	0	
	B 1 g of helium atoms	0	
	C 1 dm³ of hydrogen molecules	0	
	D 1 dm ³ of helium atoms	0	
1 0	5.0 g of an oxide of molybdenum contain 4.0 g of molybdenum.		
	What is the empirical formula of this oxide?		[1 mark]
	A MoO ₂	0	
	B Mo ₄ O ₅	0	
	C Mo ₂ O ₃	0	
	D Mo ₃ O ₂	0	
1 6	Which property would you expect the element radium, Ra, to possess	;?	[1 mark]
	A It forms a soluble sulfate.	0	
	B It does not react with water.	0	
	C It is a good conductor of electricity.	0	
	D It forms a covalent fluoride.	0	

1 5

Which equation does not represent a redox reaction?

[1 mark]

A Mg + 2HCl → MgCl₂ + H₂

0

 $B CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

0

C Fe + CuSO₄ \rightarrow FeSO₄ + Cu

0

 $\label{eq:decomposition} \textbf{D} \ \mbox{CuO} \ + \ \mbox{2} \ \mbox{HCl} \ \rightarrow \ \mbox{CuCl}_2 \ + \ \mbox{H}_2\mbox{O}$

0

1 3

NO₂⁻ ions can be reduced in acidic solution to NO How many electrons are gained when each NO₂⁻ ion is reduced?

[1 mark]

A 1

0

B 2

С

C 3

0

D 4

0

1 1 How many protons are there in 6.0 g of nitrogen gas?

Avogadro constant, $L = 6.022 \times 10^{23} \text{ mol}^{-1}$

[1 mark]

A 1.3×10^{23}

0

B 9.0×10^{23}

0

 $C 1.8 \times 10^{24}$

_

D 3.6×10^{24}

0